Les coefficients $a_{2k}(m,m')$ et $b_{2k}(m,m')$ sont des coefficients géométriques ne dépendant que de la partie angulaire de la fonction d'onde de l'état considéré et dependant uniquement des nombres quantiques ℓ , m et m'. Au contraire, les intégrales de Slater F_{2k} sont indépendantes de m et m' et ne dépendent que de la partie radiale de la fonction d'onde.

Pour résoudre simplement ce système d'équations self-consistentes, on est tenté d'utiliser l'approximation classique qui consiste à prendre toutes les intégrales de Coulomb U_{mm} , égales à U et toutes les intégrales d'échange J_{mm} , égales à J. Cette approximation est souvent utilisée pour décrire les cas non magnétique et magnétique de spin et est justifiée dans ces deux cas, car les nombres d'électrons n_{mo} sont alors indépendants de m et seules interviennent dans les équations (36) les deux sommes $\sum_{m} U_{mm}$, et $\sum_{m} U_{mm}$, qui sont indépendantes de l'orbitale m considérée. Ce n'est plus le cas quand on étudie les solutions magnétiques de spin et d'orbite et on ne peut plus remplacer les intégrales U_{mm} , et J_{mm} , par leurs valeurs moyennes : en particulier, cette approximation conduit à des résultats faux au voisinage de la condition de découplage orbital ; il faut donc utiliser les formules (37) pour U_{mm} , et J_{mm} .

On peut cependant simplifier la résolution du système d'équations (36); on sait, en effet, que les valeurs de $a_{2k}(m,m')$ F_{2k} et $b_{2k}(m,m')$ F_{2k} pour k > 1 sont beaucoup plus petites que les valeurs de F_0 , $a_2(m,m')F_2$ et $b_2(m,m')F_2$ dans le cas des états d et f, car les coefficients $a_{2k}(m,m')$ et $b_{2k}(m,m')$ diminuent beaucoup quand k augmente.

On peut négliger ces termes et écrire les intégrales U_{mm} , et J_{mm} , en fonction des seules intégrales F_{0} et F_{2} (ce résultat est exact pour un état de ℓ = 1 et approché pour un état de ℓ > 1) :

$$U_{mm'} = F_0 + a_2(m,m')F_2$$
 (38.a)

$$J_{mm} = b_2(m, m')F_2$$
 (38.b)

Cette approximation est justifiée, car elle respecte les règles de somme sur les intégrales U_{mm} , et J_{mm} .

Les intégrales de Slater For ont été calculées pour des atomes du